Thursday, March 19, 2015

Woodwind Mouthpiece Acoustics 101


If you have read any of my other blogs concerning saxophone mouthpieces you have seen that when it comes to discussing mouthpieces and mouthpiece baffles the conversation quickly becomes confusing.  Part of the confusion comes from the nomenclature, which isn't really agreed upon between makers, players, re-facers, etc.  Part of the confusion comes from just plain confusion.  Like the confusion of equating fluid dynamics with acoustic dynamics.  That's where I'm going to start.  Not with confusion (hopefully), but with trying to explain how fluid dynamics and acoustical dynamics get muddled together.

Let's start with a common picture of "what's going on inside" a mouthpiece.  You can enlarge by clicking on the pictures.


Fig. 1

You find pictures like this at several places on the web and from several books about woodwind mouthpiece design.  These pictures, and usually the accompanying text, shows the air/sound entering at the tip of the mouthpiece and passing through, sometimes glancing off of the mouthpiece at various places as it passes through.  Usually, the way that the sound arrows ricochet around is claimed to effect the harmonics. 


Fig. 2

Here, the tiny lip under the table of the mouthpiece is claimed to be an impediment, creating chaotic inharmonics, as opposed to a cleanly bouncing virgin sound arrows which produce neat and tidy harmonics (because neat and tidy is always better??).  Simple enough.  In fact, it is way too simple.  In fact, so simple as to be misleading.  Actually, so misinformed and misleading as to be ridiculous.  

Where to start?  First, this "ping-pong" theory of sound isn't even close to accurate.  Here is the basic idea of ping-pong theory acoustic reflection.  It shows how tiny particles of sound (soundicules?) are reflected.  Angle of incidence equals angle of reflection.  Just like a ping-pong ball.  Picture the soundicules "raining down" on this incline and reflecting off.

Fig. 3

But sound isn't particles.  A sound wave is more like a wave created by dropping a pebble in a pond.  The wave spreads out simultaneously in all directions, including back inside the mouth of the player (more on that later).  Sound waves do not reflect in a straight line like tiny particles of sound.  They also don't bounce like a ping-pong ball.  Here's the general idea of a reflecting sound wave.


Fig. 4

The sound is emanating from point A and reflecting back off of a barrier shown in the middle of the diagram.  The "B" side of the diagram just helps us understand how the reflection of sound "A" is calculated.  In this diagram, the initial sound wave has been reflected back (an echo) and is approaching the source (A). If there were a reflective surface on both sides of A, the reflected waves would then bounce back again, their force somewhat reduced.  The waves would intermingle to create a jumble of sound waves.  That's not going to be neat and tidy.  Truth is, the sound wave reflections in a mouthpiece never have been and never will be neat and tidy.

Without getting too complicated, here is a more accurate representation of what is going on.  


Fig. 5


The diagram on the left shows the first couple of pulses represented as sound waves and how they would begin to reflect inside of the mouthpiece depicted in only two dimensions.  The diagram on the right shows the bogus claim that a soundicule is aimed right at an alleged obstruction, causing the icky looking sonic chart shown below the diagram.

Here are a couple of other wave diagrams that show the complexity of wave patterns.  These are pictures of actual waves created in a shallow pan of water.


Fig. 6

In this diagram, B shows the first several wave pulses emanating from more than a single point source.  You can see how the waves begin to overlap and reflect back upon themselves.  Diagram C shows the nodal points or "standing waves" that are created once a frequency is held constant for a moment.  This is a still photograph, so it stops time.  What you would be viewing in real time is that the complex pattern would be constantly shifting.

It looks kind of confusing, right?  Well, that's nothing.  Remember that these diagrams are two dimensional representations made by waves on the surface of water.  Inside of a woodwind mouthpiece, the sound waves are doing this in three dimensions.  From that complex jumble, some waves are exiting the mouthpiece into the saxophone and their resultant shape and frequency will produce the pitch and unique tonal characteristics of this mouthpiece/horn/player combination.  Those waves could have a "primary" frequency based on a combination of the effective tube length and the fluctuation of the reed.  We would hear that as a "note."

The 3D jumbled wave idea is much more difficult to get our heads around than the super-simple super-silly ping-pong directional-arrow diagrams.  But wait, there's more.  The complexity is happening on both sides of the reed tip.  There is also a three-dimensional fuzzy jumble of sound waves inside of your mouth, throat, lungs, and nasal cavity.  Yuck.  Sorry, but that's what's going on.


Fig. 7

Again, forget about the arrows.  Yes, the air is traveling out when you exhale and blow through the mouthpiece.  But sound waves, being much faster, are also traveling back in and reflecting off of your interior surfaces.  

When you blow through the mouthpiece, it's easy to think of "speeding up the air" in order to get a certain tone on the saxophone.  Or "using warm air."  I'm sure that there are other analogies used by instructors in describing how it feels to change your embouchure to get certain tonal qualities.  But what you are actually doing is changing the shape and volume of the reflective area on the "front side" of the reed, i.e., in your mouth, throat, and maybe even your lungs.  

That concept is too confusing to teach to children, so terms like "speed up the air," etc. are used.  But promoting the speedy air theory, the ping-pong theory, the warm air theory, etc., ends up being really confusing.   Unfortunately, that confusion stays with us and is even promoted by some.  Sure, we can hit a certain note by "pretending that there is honey under our tongue," but what we are doing in part is changing the shape and increasing the volume of our oral cavity.  The same is true by hitting a note by "speeding up the air," which is a changing the shape and decreasing the volume of the oral cavity.  

These common descriptions get the player to the right physical position, but what we are actually doing is changing the reflective quality of our oral cavity and maybe beyond.  We are changing the sound coming out of the mouthpiece by changing the sound going in, although the sound coming out is the goal and what we hear.  

Mouthpiece baffles add more baffling complexity to this.  But first, another detour.  Air doesn't enter the mouthpiece just over the tip rail and then travel straight down through the chamber.  Neither does sound.  Figure #1 showed a diagram of the common ping-pong sound particle theory.


Fig. 1

You can read on the left side that:
 On most mouthpieces the wave beam is aimed
 under the table, making this place very important.  

So, according to the text, the saxophone mouthpiece creates parallel sound waves that are shot out at a target, in this case, right at the little bump under the mouthpiece table.  Sounds very much like the Star Trek "tractor beam." I would think that this would have commercial and military applications, if it were true.

Put a reed on your mouthpiece and look at it.  When that reed vibrates, you can see that air pulses will also enter over the side rails.  Air doesn't pass straight down the piece.  It also spills over the side rails.  Those side rails may be thick or thin.  They may be undercut (as in vintage large chamber pieces).  The may be straight sided (as with Brilhart, etc.).  

Everyone concentrates on the thickness of the tip rail and the shape of the baffle right inside the tip.  But the reed is also vibrating along the rail and air is pulsating over the rails in pulses approximately at the same time as the actual tip.  How can the rails not affect the sound?  And the opening/closing is taking place from the tip on back along the rail.  Since the note produced is based on the length of the air column, from where would we measure?  This "inexact" length may be what gives a particular woodwind it's recognizable sound, so it's not a bad thing that the source of the pulse is not an exact distance.

Sure, the tip of the reed creates sound producing vibrations.  But it creates vibrations not as a single pebble in a pond, but along a curved sound producing area the entire width of the tip.   The pulses created at the reed are also produced to some extent along the side rails.  Both air and sound "slip over" the mouthpiece rails to add to the complexity.  Clearly, those sound waves are not "aimed at" any possible under-table obstruction, as they would be pointed "sideways" when using the soundicules arrow theory.  So what is going on in a mouthpiece is even more complex than a pebble in a pond.  It is more like 3D swirls created by stirring the pond with a stick.

So now we have wave pulses emanating from the general tip area of the mouthpiece traveling in all directions inside of the mouthpiece.  There are sound waves traveling from one side of the mouthpiece opening to the other side of the chamber, which may be a straight walled Brilhart mouthpiece or a scooped wall Link mouthpiece.  The characteristics of those reflective surfaces would also effect the wave pattern inside of the piece and ultimately the sound sent down the neck tube.  

The mouthpiece chamber sidewalls would comprise close to 50% of the reflective surfaces inside of the mouthpiece.  The under surface of the reed (almost a constant flat surface) would comprise an additional 25%.  Any little "interference bump" under the mouthpiece table shown in the second picture in Figure # 2 and #6 is minuscule in comparison to the rest of the surfaces.  So then why does that tiny area allegedly have such a huge effect on inharmonics as claimed in the text?  The answer is because we can see that little surface.  It bothers (some of) us.    

If you look closely at the above diagrams, the two mouthpieces used as the "test" have interiors that are quite different.  So is it the tiny little flat spot or the complete changing of the mouthpiece interior shape that makes the difference in the harmonics of the two different pieces?  You can be the judge.  

Here for your consideration is my experiment with effectively increasing the size of the obstruction under the mouthpiece table.  I started with an early model of a Sumner Acousticut (they changed a lot over the years).  Despite Sumner's excellent reputation as a saxophone mouthpiece, this model has a fairly blunt end to the window, much like the one depicted in Figure 1.  


I have played and really liked this piece.  But I had never looked down inside to see the terrible inharmonious, resistant, and imprecise response caused by the little ping-pong sound particles being aimed right at the blunt window end!!!  Prior owners of this mouthpiece for the last 60 years had also missed this horrible defect because they hadn't looked.  It is strange that Sumner mouthpieces have a good reputation despite this restriction to soundicules!! 

First, I made the blunt area 200% worse by adding a piece of plastic as a further "obstacle to soundicule arrows."  Now you can't even sight from the tip straight through the mouthpiece.  Certainly all of the tractor beam soundicules are aimed right at this newly enlarged obstruction.

  

Here is the resultant sound spectrum diagram with the increased obstacle to sound wave transmission.



Okay, I don't have the equipment for creating a sound spectrum (I suspect that neither did the original author, he simply didn't fabricate a color picture as nice as mine).  As I suspected, there were differences in the harmonics of my modified mouthpiece.  The added obstacle made the Acousticut sound a bit dull and with less volume, as would be expected, but harmonics?  I think that the unicorn is actually quite representative of the visual, oops, I mean the perceived harmonic differences.  

The original little bump at the bottom of the table is maybe 5% of the chamber surface area and is deep inside the mouthpiece.  A tiny "visual obstruction" there makes no acoustical difference.  It is true that I can make a readily apparent difference in harmonics by altering 5% of the baffle shape right at the tip of the mouthpiece, but claiming that a tiny bump deep in the mouthpiece makes a huge difference requires one to adopt the ping-pong tractor beam particle theory of mouthpiece design.  I believe that my unicorn theory is just as likely.

The distance(s) from the general source of the wave to the first open tone hole on the saxophone creates a sound frequency or pitch.   By general source, I'm referring to the fact that we now realize that we are not dealing with a point source and have an exact distance.  As we have seen, the general source of the vibration is a curved tip and extends down the mouthpiece rails.  We might think of the tip rail as the source, as when adjusting the mouthpiece to adjust the pitch, but the tip and rails form a general source of the wave and that distance is + or - a centimeter or more. 

Whether the first open tone hole is C, D, Eb, it is the pitch that we first notice.  The jumble of reflected sound waves created by different mouthpiece chamber shape ultimately produces a surprisingly uniform sound (discussed in another blog not yet published).  The initial jumble created inside the mouthpiece effects the tonal quality of the pitch, but not the actual pitch.  

You may have noticed that I never got around to discussing baffles.  Sorry. I got distracted by the visuals of ping-pong acoustics, as have many others.  I'll link to the further baffle blog when it is written.

Monday, March 16, 2015

Carving a Native American Mask

Here's another non-saxophone blog.  I have had several large pieces of cedar wash up on my beach.  Some of these appear to be from "cedar poaching," where a trespasser cuts down a cedar tree and then cuts the tree into "bolts" for use in making cedar shingles.  Contrary to the Wikipedia statement that these bolts are 12 inch blocks, they are usually 18 inches long and as big as a man can handle (if the cedar tree is large).  The poacher then pushes the bolt into the river or on to the beach and recovers the floating bolts under cover of darkness.  Time was when the poachers then used a fro to hand split cedar shakes.  I think the cedar thieves have switched to stealing other things. 

Anyway, old bolts show up on my beach once in awhile.  Here's what they look like.  These two have been trimmed up because it looks like they spent many months, maybe even years, floating around in the salt water and had the look of driftwood.  I cleaned them up with a chainsaw.  The top piece is the one used for this project.




They are sitting on top of a five gallon bucket, so that gives you some idea of the size.  It's old growth cedar and I can count at least 100 annual growth rings on the bottom piece.

I can also get cedar from my own property.  I usually cut down a cedar tree every other year to get kindling wood for the fireplace and woodstove.  I can save the butt of the tree and dry it for several years.  Here's just a chunk of a "pistol-butt" tree trunk.  It was pushed over as a sapling, maybe by heavy snow, and a new leader formed the actual 100 foot tall tree, leaving a interesting chunk of wood at the base.  This shows the original leader, now decayed, poking through the 90 degree bend.





The butt has interesting grain, which makes for difficult carving but nice grain in a carved piece.  Maybe a bowl?

To start, I shaped the bolt into the basic shape of the mask using an adze.  I can use a big adze for a little while, but soon need to switch to a little hand adze.  Careful with that adze, Eugene.

 Don't wear shoes like these when using an adze!  Steel toed boots, keep your toes up, and remember that the adze is the only hand tool that scares the devil.




After the hand adze, I switch to carving knives.  Here are the three that I used.  The hook knife or spoon knife doesn't have a sheath, but it is very important to keep it sharp and without any nicks.  A strip of leather can do that.






I followed the grain a little on one cedar bolt and got a little bit of a mask shape before starting.  This was mostly hatchet work.
 Then I can move on to some smaller tools.
 But first, I need a little more of an idea of what I'm going to be removing.  Here is a pattern that I made to the scale of the wood block.

A different perspective.


 Top and side view.
 The pattern is drawn on the wood and away we go.

 
Here it is about 10% done.  I know it seems like a lot has been accomplished, but the roughing out is the fastest part.


This is an odd stage in the process where I have to tell myself not to sweat the little details.  Sure, the nose isn't even, but so much material will be removed that it doesn't make sense to straighten things out too much right now.  Plus, it is hand carved.  Not too much point in making it look machine made.

Here is the next picture that I can find in the sequence.  The mask is now fairly well along.  There was probably 7 to 10 days of carving between these two pictures.  But that's only about 2 hours a day.  As soon as I got a little tired or distracted, I put down my razor sharp carving knives and went on to a non-carving project (like rebuilding a saxophone).  I only cut myself twice while carving this mask, both tiny cuts that didn't interfere with playing the saxophone.   


This is the first application of acrylic paint.  Acrylic paint is not exactly traditional, but very, very common on recent masks.  For the rest, I used alder sap for staining the crown band and ashes for some other areas.  These areas were then given a coating of bee's wax for protection.  You can also see on the picture above that the design was centered on the curvature of the wood grain to balance out the grain lines (click on the picture).  Otherwise, the grain lines can be quite lopsided and become distracting.  This way, they are distracting, but in a good way.



Because the more traditional colorings can't be applied with precision (hot bee's wax is hard to control), there is additional carving required on some of the colored surfaces.  Also, the wax has to be applied after the paint, or else the paint won't stick.




Then it's time for some details.  The accent around the bear's lips had to be cut in later because of the blackened wax coloring used on the face. 








The hair on top is black bear.  The whiskers are polar bear from a 1940's salmon fishing lure (its use then was very common).  It probably prohibits me from selling the mask, but that's okay because I didn't make it to sell.



There are two more details to be added to the mask.  First, the lower lip was designed to fit a labret, which I haven't made yet.  Second, the bear paw is fitted to hold a talisman, which I haven't made yet for this mask.


Update:  Here is the talisman that is tucked into the back side of the bear paw.  It looks like carved ivory, but it is actually carved from an invasive local tree.  "Holly" is even the name of the closest settlement.

You've probably noticed that there is a human mouth underneath the bear's mouth, and human ears on the sides of the mask.  My mask is a Bak'was transformation mask dealing with an unpleasant incident that gave my little bay it's name, Dewatto, meaning "stay away place."  

Here is a picture of the Bak'was spirit wearing clothing and a mask so that you can see its usually camouflaged human form (picture by Edward Curtis circa 1904).  The spirit has various names along the Pacific Coast, but is generally agreed to be the "stick man," a universal figure among Pacific Northwest Natives.  It's a long story.  Our local Bak'was tend to wear more salal than ferns and hemlock boughs (like this one).



He is also fond of wearing bear skins as a disguise (Edward Curtis circa 1914), especially when foraging on the beach for cockles, his favorite food.  That's where the trouble began at Dewatto.







Here are some other carvings.

Tshonok'wa (the wild woman), sometimes claimed to be the wives of Bak'was (my transfomation mask).  More than twice the size of Bak'was, she is probably responsible for the "Big Foot" sightings by early settlers.  When told that they had seen Tshonok'wa, the settlers apparently mistranslated it as "sasquatch."  Both she and Bak'was communicate by hooting like owls, so you can tell if they are in the area (assuming that you can distinguish between them and owls).  Sometimes, like here, she wears owl feathers.  To me, her most interesting feature is that she can imitate the voice of any child's grandmother.  That's how she lures children into the woods.  Today, parents fear child molesters.  Big deal.  Tshonok'wa eats them.


Here is a Hok Hok dancer wearing a Galukw'ami mask (crooked beak).





It has a raven nestled on its head.  The raven guides Galukw'ami, usually to people, as the raven is always watching and aware of exactly where people are in the woods.  Galukw'ami then cracks open their skulls and eats their brains.  Makes for a nice bedtime story.

The frog also helps Galukw'ami locate people.  When it stop croaking, that means that people are near.  On this carving, when the frog jumps, a string clacks the beak together creating the location call of the raven (hok hok).  People hearing the call generally only see the shape of the raven, so everything seems okay.



There's a lot happening on this carving (remember to click for more detail).


Kumug'wi, king of the ocean bottom.  He can simultaneously hold a beer, a sandwich, a pickle, a cigar, chips . . . .  Kumug'wi is considered very wealthy.  Every time a native canoe tipped over (and now every time a motor boat sinks), he becomes the owner of all that settles to the ocean floor.  He is undoubtedly tired of all the beer cans.












The loon is Kumug'wi's messenger from the surface of the ocean.  It informs Kumug'wi of vessels passing on the surface and he then decides whether to keep the surface calm.